SUSTAINABLE LAND USE & IMPACT ASSESSMENT

Just another WordPress.com weblog

Posts Tagged ‘hydrology

Environmental Context – Sustainability, Biophysics & Ecological Character

with one comment

Posted by: Karl Ramjohn

If we define the environment as “the combined features and assets that provide the basis for economic and social development, natural resource management and conservation”, it becomes abundantly clear that, sustainable management strategies, options and “best practices” must be planned, implemented and maintained in the context of the processes, components and attributes of the abiotic, biotic and human factors in any developmental landscape.

Following on the earlier posts, this article examines a theoretical approach to management of impacts to the natural biophysical environment, associated with socio-economic development. This requires the establishment of a focus, for the development of a systems methodology based on measurable parameters which can be used to quantify changes in natural resource status, in relation to hypothetical marginal damages resulting from development impacts (industrial and other).

Issues related to the biophysical environment, in relation to development impacts on ecological, social and economic characteristics, generally encompass:

 ·       Physical features of the natural environment that potentially impact ON development activities; and

 ·       Physical resources of the natural environment potentially affected BY development activities.

 Physical Features of the Environment

 These are defined by the forcing functions (enduring features and driving variables) of the natural environment, that potentially impact on development activities. Physical features of the environment are generally determined by oceanographic, meteorological, climatological, topographic, geophysical and hydrological processes, characteristics and interactions, in relation to the variability of natural systems (e.g., seasonal, inter-annual and synoptic oscillations).

 These physical features have an important role in determining:

 ·       Dispersal and dissipation rates of pollutants by air, water, sediments and soil, both waste streams (process residues) and unplanned events (spill and leakages);

 ·       Risk of extreme weather events (e.g., floods, tropical storms and hurricanes);

 ·       Geophysical constraints and opportunities to landscape development (e.g., topography, soil structure and subsurface geology);

 ·       Risk of seismic and tectonic activity (e.g., earthquakes and volcanoes); and

 ·       Occupational hazards and safety in the workplace environment.

Physical Resources of the Environment

These comprise the physical components of the natural environment which are potentially at risk of being adversely affected by development (e.g., by waste streams of industrial facilities). Physical resources consist of air, soil, water (surface and subsurface) and sediments. These abiotic environmental components have a pivotal role in defining the “Ecological Character”, which refers to the structure and inter-relationships between the biological, physical and chemical components of the ecosystem. This dynamic character is driven by landscape-level features and ecological processes, which encourage the development and maintenance of critical ecosystem functions, that support key natural resource components. These act as life-support systems for flora, fauna and humans in the biosphere, by providing a number of essential goods, services, attributes, and values, including:

·       Control and stability of natural materials production, cycling and renewal systems (e.g., water, organic matter, and inorganic nutrients, and minerals);

·       Control and stability of natural energy conversion, cycling and renewal systems;

·       Support of an ecological structure (diversity of habitats, species and foodwebs);

·       Resistance to, and resilience from, adverse environmental impacts and other changes;

·       Support of economic (subsistence, commercial and recreational) activities for local area and resource-user communities; and

·       Supply of engineering media, raw materials, energy sources and waste treatment and assimilation systems (internally self-regulated within threshold limits).

The study of adverse changes to these resources, from industrial development impacts, can be achieved by measurement of environmental quality, in conjunction the physical features (forcing functions) described above. This will be elaborated upon and further developed in subsequent posts.

BIBLIOGRAPHY

Ramjohn, Karl. 2000. Development of Methodology for Impact Detection and Monitoring in Accordance with The Certificate of Environmental Clearace Rules, Rule 10. M.Sc. Thesis, Science and Management of Tropical Environments. Faculty of Agriculture & Natural Sciences, University of the West Indies, St. Augustine, Trinidad & Tobago. September 2000; 117 pp.

 

Advertisements